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Abstract. The most general reaction-diffusion model on a Cayley tree with nearest-neighbor interactions
is introduced, which can be solved exactly through the empty-interval method. The stationary solutions
of such models, as well as their dynamics, are discussed. Concerning the dynamics, the spectrum of the
evolution Hamiltonian is found and shown to be discrete, hence there is a finite relaxation time in the
evolution of the system towards its stationary state.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ga
Markov processes

1 Introduction

Reaction-diffusion systems have been studied using var-
ious methods, including analytical techniques, approxi-
mation methods, and simulation. Approximation methods
are generally different in different dimensions, as for ex-
ample the mean field techniques, working good for high
dimensions, generally do not give correct results for low-
dimensional systems. A large fraction of analytical studies
belong to low-dimensional (specially one-dimensional) sys-
tems, as solving low-dimensional systems should in prin-
ciple be easier [1–11].

The Cayley tree is a tree (a lattice having no loops)
where every site is connected to ξ nearest neighbor sites.
This no-loops property may allow exact solvability for
some models, for general coordination number ξ. Reac-
tion diffusion models on the Cayley tree have been studied
in, for example [12–17]. In [12,13,16] diffusion-limited ag-
gregations, and in [14] two-particle annihilation reactions
for immobile reactants have been studied. There are also
some exact results for deposition processes on the Bethe
lattice [17].

The empty interval method (EIM) has been used to
analyze the one dimensional dynamics of diffusion-limited
coalescence [18–21]. Using this method, the probability
that n consecutive sites are empty has been calculated.
This method has been used to study a reaction-diffusion
process with three-site interactions [22]. EIM has been
also generalized to study the kinetics of the q-state
one-dimensional Potts model in the zero-temperature
limit [23]. In [18–21], one-dimensional diffusion-limited
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processes have been studied using EIM. There, some of
the reaction rates have been taken infinite, and the mod-
els have been worked out on continuum. For the cases
of finite reaction-rates, some approximate solutions have
been obtained.

In [24,25], all the one dimensional reaction-diffusion
models with nearest neighbor interactions which can be
exactly solved by EIM have been found and studied. Con-
ditions have been obtained for the systems with finite re-
action rates to be solvable via EIM, and then the equa-
tions of EIM have been solved. In [25], general conditions
were obtained for a single-species reaction-diffusion sys-
tem with nearest neighbor interactions, to be solvable
through EIM. Here solvability means that evolution equa-
tion for En (the probability that n consecutive sites be
empty) is closed. It turned out there, that certain relations
between the reaction rates are needed, so that the system
is solvable via EIM. The evolution equation of En is a re-
cursive equation in terms of n, and is linear. It was shown
that if certain reactions are absent, namely reactions that
produce particles in two adjacent empty sites, the coeffi-
cients of the empty intervals in the evolution equation of
the empty intervals are n-independent, so that the evolu-
tion equation can be easily solved. The criteria for solvabil-
ity, and the solution of the empty-interval equation were
generalized to cases of multi-species systems and multi-
site interactions in [26–28].

In this article the most general single-species reaction-
diffusion model with nearest-neighbor interactions on a
Cayley tree is investigated, which can be solved ex-
actly through the empty interval method. The scheme
of the paper is as follows. In Section 2, the most gen-
eral reaction-diffusion model with nearest-neighbor inter-
actions on a Cayley tree is studied, which can be solved
exactly through EIM. The evolution equation of En is also
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Fig. 1. The Cayley tree with ξ = 3.

Fig. 2. An empty cluster with the links at the boundary, on a
Cayley tree with ξ = 3.

obtained. In Section 3 the stationary solution of such mod-
els, as well as their dynamics are discussed. Finally, Sec-
tion 4 is devoted to concluding remarks.

2 Models solvable through the empty interval
method on a Cayley tree

The Cayley tree is a tree (a lattice without loops) where
each site is connected to ξ sites (Fig. 1). Two sites are
called neighbors if they are connected through a link. Con-
sider a system of particles on a Cayley tree. Each site is
either empty or occupied by one particle. The interaction
(of particles and vacancies) is nearest neighbor. The prob-
ability that a connected collection of n sites be empty is
denoted by En. It is assumed that this quantity does not
depend on the choice of the collection. An example is a
tree where the probability that a site is occupied is ρ and
is independent of the states of other sites. Then

En = (1 − ρ)n. (1)

The following graphical representations help express var-
ious relations in a more compact form. An empty (occu-
pied) site is denoted by ◦ (•). A connected collection of n
empty sites is denoted by ©n.

There is no loop in a Cayley tree, so each site can only
be connected to a single existing cluster site, by a single
link. For ξ ≥ 3 (the case we are interested in here) the
closedness of the evolution equation for En requires that
the rate of creating an empty site be zero. The reason
is that if it is not the case, then an empty n-cluster can

be created from two disjoint empty clusters joined by a
single occupied site [29]. This shows that if the evolution
of the empty clusters is to be closed, then the only possible
reactions are the following, with the rates indicated.

•◦ → • •, r1

◦◦ → ◦ •, r2

◦◦ → • •, r3. (2)

(There is no distinction between left and right, of course.)
This means that the reactants are immobile, and the co-
agulation and diffusion rates are zero.

Using these, one arrives at the following time evolution
for En:

dEn

dt
= − Rn r1 P (•−©n) − Rn (r2 + r3)P (◦−©n)

− (n − 1) (2 r2 + r3)P (©n), (3)

where Rn is the number of sites adjacent to a collection
of n connected sites. A simple induction shows that

Rn = n (ξ − 2) + 2. (4)

One has

P (•−©n) + P (◦−©n) = P (©n), (5)

from which
P (•−©n) = En − En+1. (6)

Using this, one arrives at

dEn

dt
= Rn [−r1 (En − En+1) − (r2 + r3)En+1]

− (n − 1) (2 r2 + r3)En. (7)

Throughout the paper, it is assumed that r1, r2, and r3

are all nonzero.

3 The solution

The stationary solution of the system (Es, for which the
time derivative vanishes), satisfies

Rn [−r1 (Es
n − Es

n+1) − (r2 + r3)Es
n+1]

− (n − 1) (2 r2 + r3)Es
n = 0. (8)

As En’s are nonnegative and nonincreasing in n, it is easy
to see that the only solution to (8) is

Es
n = 0. (9)

This means that in the stationary configuration, all of the
sites are occupied, which is not a surprise since in all re-
actions particles are created.

Regarding dynamics, one question is to obtain the
spectrum of the evolution Hamiltonian. This is equivalent
to finding solutions with exponential time dependence:

EE
n(t) = EE

n exp(E t). (10)
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Putting this in (7), one arrives at

− [Rn r1 + (n − 1) (2 r2 + r3) + E ] EE
n

+ Rn (r1 − r2 − r3)EE
n+1 = 0. (11)

From this,
EE

n+1 = ζn EE
n , (12)

where

ζn :=
Rn r1 + (n − 1) (2 r2 + r3) + E

Rn (r1 − r2 − r3)
. (13)

It is seen that

lim
n→∞ ζn =

(ξ − 2) r1 + 2 r2 + r3

(ξ − 2) (r1 − r2 − r3)
. (14)

The right-hand side is either negative or greater than one.
So if all EE

n ’s are nonzero, then EE
n ’s either are not all

nonnegative or blow up for large n’s. Such EE
n ’s are not

acceptable as probabilities. To see the reason, consider E1

(the largest E). For large times, only En’s corresponding
to this eigenvalue survive. But these should be nonincreas-
ing with respect to n, and nonnegative, which is not the
case. So EE1

n ’s must be identically zero for n larger than a
certain integer (say n1). A similar reasoning can then be
made for E2 (the next largest value of E), and the values
of EE2

n for n > n1, to show that there should be another
integer n2 so that EE2

n vanishes for n > n2. This argument
can be continued to show that for all E ’s, there must be an
integer so that EE

n ’s are identically zero for n larger than
that integer. This shows that ζn must be zero for some
positive n, which gives the allowed values of E :

Ek = −ξ r1 − (k − 1)β, k ≥ 1, (15)

where
β := (ξ − 2) r1 + 2 r2 + r3. (16)

This spectrum is discrete, and there is a gap between the
largest eigenvalue and zero, which means that the system
evolves towards its stationary configuration with a relax-
ation time. This relaxation time is

τ =
1

ξ r1
. (17)

One can also find EE
n ’s. Denoting EEk

n by Ek
n, and us-

ing (12) and (15), one arrives at

Ek
n =

Γ

(
k +

2
ξ − 2

)
αk−n

Γ

(
n +

2
ξ − 2

)
(k − n)!

, (18)

where

α :=
(ξ − 2) (r2 + r3 − r1)
(ξ − 2) r1 + 2 r2 + r3

. (19)

The general solution to (7) is then

En(t) =
∞∑

k=1

ck Ek
n exp(Ek t), (20)

where ck’s are to be determined from the initial condition.
A special solution to (7) is of the form

En(t) = E1(t) [b(t)]n−1. (21)

Putting this in (7), one arrives at

db

dt
= −β b − β α b2,

dE1

dt
= −

(
ξ r1 +

ξ

ξ − 2
α β b

)
E1. (22)

These are readily solved and one obtains

b(t) =
b(0) exp(−β t)

1 + α b(0) [1 − exp(−β t)]
,

E1(t) = E1(0) exp(−ξ r1 t)

×
{

1
1 + α b(0) [1 − exp(−β t)]

} ξ
ξ−2

. (23)

Using these, one obtains

En(t) = En(0) exp[−ξ r1 t − (n − 1)β t]

×
{

1
1 + α b(0) [1 − exp(−β t)]

} ξ
ξ−2+n−1

. (24)

It is seen that for large times, all En’s tend to zero. In fact
they decay like

En(t) ∼ exp[−ξ r1 t − (n − 1)β t]. (25)

One notes that in fact En(t) decays like exp(−En t), and
this is expected, as Ek

n is zero for k < n.
A special case where the ansatz (21) works is the case

of initially uncorrelated-sites, so that each site is occupied
with probability ρ regardless of other sites. One has then

En(0) = (1 − ρ)n, (26)

so that

E1(0) = 1 − ρ,
b(0) = 1 − ρ. (27)

The special case ξ = 2 can be treated directly or as a limit-
ing case of the general problem. The results corresponding
to (15) and (18) would be

Ek = −2 r1 − (k − 1) (2 r2 + r3), ξ = 2, (28)

and

Ek
n =

1
(k − n)!

[
2 (r2 + r3 − r1)

2 r2 + r3

]k−n

, ξ = 2. (29)

Finally, the solutions corresponding to the ansatz (21)
would be

b(t) = b(0) exp[−(2 r2 + r3) t], ξ = 2, (30)
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and

E1(t) = E1(0) × exp
{

2 (r1 − r2 − r3)
2 r2 + r3

b(0)

×
[
1 − exp[−(2 r2 + r3) t]

]}

× exp(−2 r1 t), ξ = 2, (31)

so that

En(t) = En(0) exp
{

2 (r1 − r2 − r3)
2 r2 + r3

b(0)
[
1

− exp[−(2 r2 + r3) t]
]}

× exp{−[2 r1 + (n − 1) (2 r2 + r3)] t}, ξ = 2,
(32)

4 Concluding remarks

The most general single-species exclusion model on a Cay-
ley tree was considered, for which the evolution of the
empty-intervals is closed. It was shown that in the sta-
tionary configuration of such models all sites are occupied.
The dynamics of such systems were also studied and it was
shown that the spectrum of the evolution Hamiltonian is
discrete. The time evolution of the initially uncorrelated
system was also obtained. Among the questions remain-
ing, one can mention the problem of Cayley trees with
boundaries, with injection and extraction at the bound-
aries.

The authors would like to thank Daniel ben-Avraham for his
very useful comments. This work was partially supported by
the research council of the Alzahra University.
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